Nanomagnetic Gene Transfection for Non-Viral Gene Delivery in NIH 3T3 Mouse Embryonic Fibroblasts

نویسندگان

  • Angeliki Fouriki
  • Jon Dobson
چکیده

The objective of this work was to examine the potential of oscillating nanomagnetic gene transfection systems (magnefect-nano™) for improving the transfection efficiency of NIH3T3 mouse embryonic fibroblasts (MEFs) in comparison to other non-viral transfection techniques-static magnetofection™ and the cationic lipid agent, Lipofectamine 2000™. Magnetic nanoparticles (MNPs) associated with the plasmid coding for green fluorescent protein (GFP) were used to transfect NIH3T3 cells. The magnefect-nano system was evaluated for transfection efficiency, and any potential associated effects on cell viability were investigated. MNPs associated with the plasmid coding for GFP were efficiently delivered into NIH3T3 cells, and the magnefect-nano system significantly enhanced overall transfection efficiency in comparison to lipid-mediated gene delivery. MNP dosage used in this work was not found to affect the cell viability and/or morphology of the cells. Non-viral transfection using MNPs and the magnefect-nano system can be used to transfect NIH3T3 cells and direct reporter gene delivery, highlighting the wide potential of nanomagnetic gene transfection in gene therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Spata-19 New Variant with Expression beyond Meiotic Phase of Mouse Testis Development

Background: The study of specific genes expressed in the testis is important to understanding testis development and function. Spermatogenesis is an attractive model for the study of gene expression during germ cell differentiation. Spermatogenesis associated-19 (Spata-19) is a recently-identified important spermatogenesis-related gene specifically expressed in testis. Its protein product is in...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

The role of surface chemistry-induced cell characteristics on nonviral gene delivery to mouse fibroblasts

UNLABELLED BACKGROUND Gene delivery approaches serve as a platform to modify gene expression of a cell population with applications including functional genomics, tissue engineering, and gene therapy. The delivery of exogenous genetic material via nonviral vectors has proven to be less toxic and to cause less of an immune response in comparison to viral vectors, but with decreased efficiency...

متن کامل

Recombinant mussel adhesive protein as a gene delivery material.

Efficient target gene delivery into eukaryotic cells is important for biotechnological research and gene therapy. Gene delivery based on proteins, including histones, has recently emerged as a powerful non-viral DNA transfer technique. Here, we investigated the potential use of a recombinant mussel adhesive protein, hybrid fp-151, as a gene delivery material, in view of its similar basic amino ...

متن کامل

Enhanced Nanomagnetic Gene Transfection of Human Prenatal Cardiac Progenitor Cells and Adult Cardiomyocytes

Magnetic nanoparticle-based gene transfection has been shown to be an effective, non-viral technique for delivery of both plasmid DNA and siRNA into cells in culture. It has several advantages over other non-viral delivery techniques, such as short transfection times and high cell viability. These advantages have been demonstrated in a number of primary cells and cell lines. Here we report that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013